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ESTIMATE FOR THE MAXIMUM COMPRESSION

OF SINGLE SHOCKS

J. D. Johnson

Abstract

We derive that the maximum compression for any single-shock Hugoniot has an upper

bound of 7.  For the principal Hugoniot, we present a simple analytic estimate for the

maximum compression as a function of  ρo   (initial density), A  (atomic weight), Z  (atomic

number), and ∆E  (the sum of cohesion, dissociation, and total ionization energies).

__________________________________

An Upper Bound

Any Hugoniot is determined from the hydrodynamic equation of state P ρ, E( ) and

the energy jump condition,

E − Eo = 1
2

P + Po( ) 1 / ρo − 1 / ρ( )  . (1)

Here P is pressure, ρ  is density, and E  is the internal energy per gram.  Po ,  ρo , and Eo

represent the same but are for the initial state of the Hugoniot.  We define the compression

as η = ρ / ρo and rewrite Eq. (1) as

η = 4 + 2ρ E − Eo( ) − 3 P + Po( )[ ] / P + Po( )  . (2)
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We now assume that the virial theorem is exact for the equation of state [1]; i.e., if

E = K + U , where K  is the average kinetic energy per gram and U  is the average potential

energy per gram, then P / ρ = 2K / 3 + U / 3.  (We are considering here the case of physical

interest, namely, the charge neutral, quantum coulomb system.)  It is widely believed that

this assumption is true, although there is no rigorous proof in the literature.  Substituting

into Eq. (2), we get

η = ηb − 3Po 1 + η( ) / P + Po( ) ≤ ηb   , (3)

where ηb = 4 + ρ U − Uo( ) / P + Po( ) .  If U ≤ Uo , then η ≤ ηb ≤ 4.  If U ≥ Uo , then we rewrite

Eq. (3) as

η ≤ ηb = 4 + 3 / 1 + 2Ks / Us + 3Po 1 / ρ + 1 / ρo( ) / Us[ ]  , (4)

where Ks = K − Ko  and Us = U − Uo .

For classical systems, Ks ≥ 0  because the average kinetic energy is linear in

temperature T .  For quantum systems, we can only say that it is     very     reasonable that Ks ≥ 0

when Us ≥ 0 if η ≥ 7 − ε  ε > 0( ) .  (Models support this position.)  Then from Eq. (4),

η ≤ ηb ≤ 7.  Thus we conclude that the compression along a single-shock Hugoniot for any

material cannot exceed 7.

An Estimate for the Principal Hugoniot

We now look to the principal Hugoniot, where Po = 0.  We assume that we are

shocking from T = 0 .  (The difference between zero and room temperature is small when

we are looking for estimates of the maximum compression.)  From Eqs. (3) and (4), we

find that



3

η = 4 + 3 / 1 + 2Ks / Us( )  . (5)

It is convenient to define Y = 1

2
Us / ∆E  where, for the principal Hugoniot, ∆E = −Eo  and is

the sum of cohesive, dissociation, and total ionization energies.  Then

η = 7Y + 4Ks / ∆E( ) / Y + Ks / ∆E( )  . (6)

From the exact high-temperature series for the equation of state of any elemental

material [2], we obtain Y  as an exact series in 1 / Ks .  (We are thinking of Ks  as the

independent variable.)  All that we need is

Y = 1 + aα 1/2 + ⋅ ⋅ ⋅  , (7a)

with

a = −e3 1 + Z( )2 L / A( )2 / ∆E (7b)

and

α = 3

2
πZ3ρo / Ks   . (7c)

In these equations, L  is Avogadro's number, and e is the electron charge.  The aα 1/2

originates from the Debye-Hückel term in the high−T  expansion.

We substitute  Eqs. (7a)-(7c) into Eq. (6) and solve for the maximum compression,

ηm .  The result is

ηm = 4 1 + 7C( ) / 1 + 4C( )  , (8a)

with

C = 2 ∆E / Z( )3 A4 / 81e6π 1 + Z( )4 L4ρo[ ]  . (8b)
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This is our estimate for the maximum compression along the principal Hugoniot.

Equation (8b) can be simplified further if one neglects cohesive and dissociation

energies.  We fit to the total ionization energies of C. E. Moore (through Ca) [3] to estimate

that ∆E ≅ 13.6Z2.4  ev per atom.  Thus

C ≅ 0.011AZ 4.2 / ρo 1 + Z( )4[ ]  . (8c)

Conclusions

The estimates of Eqs. (8a)-(8c) and an upper bound of 7 are our results.  The only

data on ηm  is for Al [4].  There ηm ~ 5, and that value agrees well with Eqs. (8).  One has

available more terms in the expansion Eq. (7a).  We have extensively studied these terms

and found that they do not influence our estimates at all.  We have also extensively worked

with the series Eq. (7a) using Padé approximants.  Again there was no influence at all.  We

feel Eqs. (8a)-(8c) are a quite good approximation of ηm .  The Al  data, models, and Eqs.

(8) all show that the bound of 7 is a tight one, with some materials having anηm  of about 6.
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